{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# EGF and HRG Stimulation of ERBB2 Overexpressing HMEC Cells (Wolf Yadlin 2006)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "#Supporting packages for analysis\n", "import numpy as np\n", "import pandas as pd\n", "\n", "#KSTAR imports\n", "from kstar import config, helpers, calculate\n", "from kstar.plot import DotPlot\n", "\n", "\n", "\n", "#Set matplotlib defaults for arial 12 point font\n", "from matplotlib import rcParams\n", "rcParams['font.family'] = 'sans-serif'\n", "rcParams['font.sans-serif'] = ['Arial']\n", "rcParams['font.size'] = 12\n", "import matplotlib.pyplot as plt\n", "\n", "#where supplementary data was downloaded to (From https://figshare.com/articles/dataset/KSTAR_Supplementary_Data/14919726)\n", "SUPPLEMENTS_DIR = './'\n", "\n", "#Directory where KSTAR Supplemental data was set \n", "odir = SUPPLEMENTS_DIR+'Supplements/SupplementaryData/Control_Experiments/EGF_184A1_HER2_WolfYadlin2006/'\n", "\n", "#load the Mann Whitney activities and FPR for Tyrosine predictions, \n", "#it will be faster and less data than loading all KSTAR outputs\n", "activities = pd.read_csv(odir+'/RESULTS/EGF_HER2_Y_mann_whitney_activities.tsv', sep='\\t', index_col=0)\n", "fpr = pd.read_csv(odir+'/RESULTS/EGF_HER2_Y_mann_whitney_fpr.tsv', sep='\\t', index_col=0)\n", "\n", "\n", "#load kinase map from supplementary data\n", "KINASE_MAP = pd.read_csv(SUPPLEMENTS_DIR+'SupplementaryData/Map/globalKinaseMap.csv', index_col = 0)\n", "#set preferred kinase names from the kinase map (make a kinase_dict)\n", "kinase_dict = {}\n", "for kinase in activities.index:\n", " kinase_dict[kinase] = KINASE_MAP.loc[kinase,'Preferred Name']" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "#set up a description table\n", "cell_dict = {}\n", "treatment_dict = {}\n", "for col in activities.columns:\n", " label = col.split(':')\n", " descr = label[1]\n", " descr_labels = descr.split('_')\n", " cell_dict[col] = descr_labels[0]\n", " treatment_dict[col] = descr_labels[1]\n", " " ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "temp1 = pd.DataFrame.from_dict(cell_dict, orient='index', columns=['Cell Type'])\n", "temp2 = pd.DataFrame.from_dict(treatment_dict, orient='index', columns=['Growth Factor'])\n", "s1 = temp1.join(temp2)\n", "s1['ID'] = s1.index" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Cell Type | \n", "Growth Factor | \n", "ID | \n", "
---|---|---|---|
data:24H_EGF_0(min) | \n", "24H | \n", "EGF | \n", "data:24H_EGF_0(min) | \n", "
data:24H_EGF_5(min) | \n", "24H | \n", "EGF | \n", "data:24H_EGF_5(min) | \n", "
data:24H_EGF_10(min) | \n", "24H | \n", "EGF | \n", "data:24H_EGF_10(min) | \n", "
data:24H_EGF_30(min) | \n", "24H | \n", "EGF | \n", "data:24H_EGF_30(min) | \n", "
data:24H_HRG_0(min) | \n", "24H | \n", "HRG | \n", "data:24H_HRG_0(min) | \n", "
data:24H_HRG_5(min) | \n", "24H | \n", "HRG | \n", "data:24H_HRG_5(min) | \n", "
data:24H_HRG_10(min) | \n", "24H | \n", "HRG | \n", "data:24H_HRG_10(min) | \n", "
data:24H_HRG_30(min) | \n", "24H | \n", "HRG | \n", "data:24H_HRG_30(min) | \n", "
data:P_EGF_0(min) | \n", "P | \n", "EGF | \n", "data:P_EGF_0(min) | \n", "
data:P_EGF_5(min) | \n", "P | \n", "EGF | \n", "data:P_EGF_5(min) | \n", "
data:P_EGF_10(min) | \n", "P | \n", "EGF | \n", "data:P_EGF_10(min) | \n", "
data:P_EGF_30(min) | \n", "P | \n", "EGF | \n", "data:P_EGF_30(min) | \n", "
data:P_HRG_0(min) | \n", "P | \n", "HRG | \n", "data:P_HRG_0(min) | \n", "
data:P_HRG_5(min) | \n", "P | \n", "HRG | \n", "data:P_HRG_5(min) | \n", "
data:P_HRG_10(min) | \n", "P | \n", "HRG | \n", "data:P_HRG_10(min) | \n", "
data:P_HRG_30(min) | \n", "P | \n", "HRG | \n", "data:P_HRG_30(min) | \n", "